A semi–discrete high resolution scheme for nonlinear scalar conservation laws

نویسندگان

  • Yousef Hashem Zahran
  • Y. H. Zahran
چکیده

The purpose of this paper is twofold. Firstly we carry out an extension of the fully discrete third order TVD scheme, for linear case, presented in [8] to nonlinear scalar hyperbolic conservation laws for one and two dimensions. Secondly, we propose a semi-discrete version of the scheme. Time evolution is carried out by the third order TVD RungeKutta method. The advantages of the scheme are its simplicity, third order, non-oscillatory and that can be used for large time steps which can save more time. Examples and convergence rates are presented for the Burger equation for one and two dimensions which confirm the high resolution content of the proposed schemes. We use exact solutions and other methods to validate the results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

New High-Resolution Semi-discrete CentralSchemes for Hamilton–Jacobi Equations

We introduce a new high-resolution central scheme for multidimensional Hamilton–Jacobi equations. The scheme retains the simplicity of the non-oscillatory central schemes developed by C.-T. Lin and E. Tadmor (in press, SIAM J. Sci. Comput.), yet it enjoys a smaller amount of numerical viscosity, independent of 1/1t. By letting 1t ↓ 0 we obtain a new second-order central scheme in the particular...

متن کامل

High-Order Accurate, Fully Discrete Entropy Stable Schemes for Scalar Conservation Laws

The recently developed TECNO schemes for hyperbolic conservation laws are designed to be high-order accurate and entropy stable, but are, as of yet, only semi-discrete. We perform an explicit discretization of the temporal derivative to obtain a fully discrete scheme, and derive a non-strict CFL condition that ensures global entropy stability. The scheme is tested in a series of numerical exper...

متن کامل

Discrete Shocks for Finite Diierence Approximations to Scalar Conservation Laws 1

Numerical simulations often provide strong evidences for the existence and stability of discrete shocks for certain nite diierence schemes approximating conservation laws. This paper presents a framework for converting such numerical observations to mathematical proofs. The framework is applicable to conservative schemes approximating stationary shocks of one dimensional scalar conservation law...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006